Strain-induced nonlinear spin Hall effect in topological Dirac semimetal
نویسندگان
چکیده
منابع مشابه
Large transverse Hall-like signal in topological Dirac semimetal Cd3As2
Cadmium arsenide (Cd3As2) is known for its inverted band structure and ultra-high electron mobility. It has been theoretically predicted and also confirmed by ARPES experiments to exhibit a 3D Dirac semimetal phase containing degenerate Weyl nodes. From magneto-transport measurements in high quality single crystals of Cd3As2, a small effective mass m(*) ≈ 0.05 me is determined from the Shubniko...
متن کاملNonlinear dynamics induced anomalous Hall effect in topological insulators
We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can c...
متن کاملDiscovery of a three-dimensional topological Dirac semimetal, Na3Bi.
Three-dimensional (3D) topological Dirac semimetals (TDSs) represent an unusual state of quantum matter that can be viewed as "3D graphene." In contrast to 2D Dirac fermions in graphene or on the surface of 3D topological insulators, TDSs possess 3D Dirac fermions in the bulk. By investigating the electronic structure of Na3Bi with angle-resolved photoemission spectroscopy, we detected 3D Dirac...
متن کاملOptically induced spin-Hall effect in atoms.
We propose an optical means to realize the spin-Hall effect (SHE) in a neutral atomic system by coupling the internal spin states of atoms to radiation. The interaction between the external optical fields and the atoms creates effective magnetic fields that act in opposite directions on "electrically" neutral atoms with opposite spin polarizations. This effect leads to a Landau level structure ...
متن کاملThe quantum spin Hall effect and topological insulators
form many different states of matter, such as crystalline solids, magnets, and superconductors. Those different states can be classified by the symmetries they spontaneously break— translational, rotational, and gauge symmetries, respectively, for the examples above. Before 1980 all states of matter in condensed-matter systems could be classified by the principle of broken symmetry. The quantum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2018
ISSN: 2045-2322
DOI: 10.1038/s41598-018-33655-w